<table>
<thead>
<tr>
<th>Term</th>
<th>National Curriculum requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td>read, write, order and compare numbers up to 10,000,000 and determine the value of each digit</td>
</tr>
<tr>
<td>Place Value</td>
<td>round any whole number to a required degree of accuracy</td>
</tr>
<tr>
<td>(2 weeks)</td>
<td>solve problems involving addition and subtraction</td>
</tr>
<tr>
<td></td>
<td>solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why</td>
</tr>
<tr>
<td></td>
<td>generate and describe linear number sequences</td>
</tr>
<tr>
<td>Unit 2</td>
<td>identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places</td>
</tr>
<tr>
<td>Multiplication and division</td>
<td>use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy</td>
</tr>
<tr>
<td>(3 weeks)</td>
<td>multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication</td>
</tr>
<tr>
<td></td>
<td>multiply one-digit numbers with up to two decimal places by whole numbers</td>
</tr>
<tr>
<td></td>
<td>divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context</td>
</tr>
<tr>
<td></td>
<td>divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context</td>
</tr>
<tr>
<td></td>
<td>use written division methods in cases where the answer has up to two decimal places</td>
</tr>
<tr>
<td></td>
<td>identify common factors, common multiples and prime numbers</td>
</tr>
<tr>
<td></td>
<td>perform mental calculations, including with mixed operations and large numbers</td>
</tr>
<tr>
<td></td>
<td>solve problems which require answers to be rounded to specified degrees of accuracy</td>
</tr>
<tr>
<td>Unit 3</td>
<td>find pairs of numbers that satisfy an equation with two unknowns</td>
</tr>
<tr>
<td>Calculation problems</td>
<td>use knowledge of the order of operations to carry out calculations involving the four operations</td>
</tr>
<tr>
<td>(2 weeks)</td>
<td>express missing number problems algebraically</td>
</tr>
<tr>
<td></td>
<td>solve problems involving addition, subtraction, multiplication and division</td>
</tr>
<tr>
<td>Unit 4</td>
<td>use common factors to simplify fractions; use common multiples to express fractions in the same denomination</td>
</tr>
<tr>
<td>Fractions</td>
<td>compare and order fractions, including fractions > 1</td>
</tr>
<tr>
<td>(2 weeks)</td>
<td>associate a fraction with division and calculate decimal fraction equivalents</td>
</tr>
<tr>
<td></td>
<td>for example, 0.375 for a simple fraction for example, (\frac{3}{8})</td>
</tr>
<tr>
<td></td>
<td>recall and use equivalences between simple fractions and decimals, including in different contexts</td>
</tr>
<tr>
<td></td>
<td>generate and describe linear number sequences (with fractions)</td>
</tr>
<tr>
<td></td>
<td>add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions</td>
</tr>
<tr>
<td>Unit 5</td>
<td>recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.</td>
</tr>
<tr>
<td>Missing angles and lengths</td>
<td>express missing number problems algebraically</td>
</tr>
<tr>
<td>(1 week)</td>
<td>compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons</td>
</tr>
</tbody>
</table>
Year 6 Programme of Study - ‘Term per page overview’ 2017-2018

<table>
<thead>
<tr>
<th>Spring</th>
<th>Unit 6 Coordinates and shape (2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• use negative numbers in context, and calculate intervals across zero</td>
</tr>
<tr>
<td></td>
<td>• describe positions on the full coordinate grid (all four quadrants)</td>
</tr>
<tr>
<td></td>
<td>• enumerate possibilities of combinations of two variables</td>
</tr>
<tr>
<td></td>
<td>• draw 2-D shapes using given dimensions and angles</td>
</tr>
<tr>
<td></td>
<td>• draw and translate simple shapes on the coordinate plane, and reflect them in the axes</td>
</tr>
<tr>
<td></td>
<td>• recognise, describe and build simple 3-D shapes, including making nets</td>
</tr>
<tr>
<td></td>
<td>• illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius</td>
</tr>
<tr>
<td></td>
<td>• solve number and practical problems that involve all of the above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Unit 7 Fractions (1 week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, (\frac{1}{4} \times \frac{1}{2} = \frac{1}{8})]</td>
</tr>
<tr>
<td></td>
<td>• divide proper fractions by whole numbers [for example, (\frac{1}{3} \div 2 = \frac{1}{6})]</td>
</tr>
<tr>
<td></td>
<td>• recall and use equivalences between simple fractions and decimals, including in different contexts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Unit 8 Decimals and measures (3 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate</td>
</tr>
<tr>
<td></td>
<td>• use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation up to three decimal places</td>
</tr>
<tr>
<td></td>
<td>• convert between miles and kilometres</td>
</tr>
<tr>
<td></td>
<td>• recognise that shapes with the same areas can have different perimeters and vice versa</td>
</tr>
<tr>
<td></td>
<td>• recognise when it is possible to use formulae for area and volume of shapes</td>
</tr>
<tr>
<td></td>
<td>• use simple formulae</td>
</tr>
<tr>
<td></td>
<td>• calculate the area of parallelograms and triangles</td>
</tr>
<tr>
<td></td>
<td>• calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm(^3)) and cubic metres (m(^3)), and extending to other units [for example, mm(^3) and km(^3)]</td>
</tr>
<tr>
<td></td>
<td>• generate and describe linear number sequences (with decimals)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Unit 9 Percentages and statistics (2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• recall and use equivalences between simple fractions, decimals and percentages, including in different contexts</td>
</tr>
<tr>
<td></td>
<td>• solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison</td>
</tr>
<tr>
<td></td>
<td>• interpret and construct pie charts and line graphs and use these to solve problems</td>
</tr>
<tr>
<td></td>
<td>• calculate and interpret the mean as an average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer term</th>
<th>Unit 10 Proportion problems (2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts</td>
</tr>
<tr>
<td></td>
<td>• solve problems involving similar shapes where the scale factor is known or can be found</td>
</tr>
<tr>
<td></td>
<td>• solve problems involving unequal sharing and grouping using knowledge of fractions and multiples</td>
</tr>
</tbody>
</table>

Summer term

We do not provide specific guidance for Year 6 in the summer term. Schools should instead plan to use the term to consolidate and apply previously learnt topics using their own assessments to identify which areas need further development.

© Mathematics Mastery 2017
and transition to Year 7 in early July.

Schools should also allow time to prepare children for KS2 tests in May.